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1. INTRODUCTION

If g(y) is an increasing function of y, the solution sequences of the
difference equation

yerr =gy, t=0,1,2,... (1)

are monotonic and hence, if bounded, converge. Assuming g(y) is
continuous and letting ¢ — oo in (1) we find that the limit y, = lim, Ly,
of a convergent solution is necessarily an equilibrium solution y,=y,,
since y, is a root of the equilibrium equation y=g(y). We are
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motivated by difference equations of this monotone type that appear
as applications in population dynamics.
An example is the Beverton-Holt equation

Yepp =7 Yo v>0

1+ CYy
where r and ¢ are positive constants. If r < 1, the solution of this initial
value problem converges to the equilibrium y,=0. If » > 1 the solution
converges to the positive equilibriuvm y,=K=(@F-1)fc. With K
introduced explicitly, the Beverton-Holt equation becomes

1
= F .
AR W I ST R

Because all solutions are monotonic and converge, this difference
equation is, from a dynamics point of view, a more appropriate
analog to the famous logistic differential equation than are non-
monotone maps such as the so-called “discrete logistic” eguation
Ves1=r1—cy)y, (with K={—1)/rc) or the Ricker equation v,y =
re~ 2y, (with K=(1/¢)Inr). As is well known, such “one hump” maps
can have periodic solutions and even chaotic solutions.

In theoretical ecology, the parameters r and K play an important
role. The coefficient r is considered a characteristic of the population
(its “inherent growth rate™), determined by life cycle and demographic
properties such as birth rates, survivorship rates, etc. The coefficient K
is considered a characteristic of the habitat or environment (called the
“carrying capacity”), e.g., resource availability, temperature, humid-
ity, ete. The autonomous equations and their equilibrium theory are
appropriate in biological applications only if the r and K are constant
over time. In cases where one or both of these parameters fluctuate in
time {which is, of course, quite common for biological populations),
the model equations become non-autonomous. For example, periodic
fluctuations are common {caused, for example, by annual or daily
fluctuations in the physical environment), in which case » and/or K
become periodic functions of time. While periodic differential equation
population models have been considered in the literature, relatively
little attention has been paid to periodic difference equation
population models. (See, however [3,5~9].)



MONOTONE DIFFERENCE EQUATIONS 861

One ecological question that has been studied by means of periodic
models concerns the effect of a periodic environment on a population,
L.e., the effect of a periodic K. Attention has focused on whether or not
a population is adversely affected by a periodic environment (relative
to a constant environment of the same average carrying capacity).
Early results based on the logistic differential equation implied that a
periodic carrying capacity K is deleterious in the sense that the average
of the resulting population oscillations is less than the average of X
[1,2,10,11]. Later results showed this assertion can be model
dependent [4,12]. A recent study utilizing non-monotone difference
equations has demoastrated the latter point. In [3,9] it is shown, by
mathematical analysis and laboratory experiments, that it is possible
for a periodic environment to be advantageous for a population in the
sense that average densities are greater in a periodic environment than
in a constant environment.

In this paper, we show that a periodic environment is always
deleterious for populations modeled by a class of monotone difference
equations. This result is analogous to that in [1, 10] for the logistic
differential equation. '

In a periodic environment version of the Beverton-Holt equation
we replace K by a periodic sequence K= K(7). We will restrict our
attention in this paper to oscillations of period two. Therefore, we
take K=K, {1+of—1))} where K, is the average of K over time
and «el0,1) the relative amplitude of the oscillation. (We have
arbitrarily chosen the oscillation so that its maximum occurs at even
time units. Our results remain valid if instead the maximum oceurs at
odd tme units, fe., aee(—1,0]) In the resulting equation, we can
eliminate the parameter K, by the rescaling x,=y,/K,, and obtain
the equation

|
TH - D/ F o)) "

Xig] =

(2)

Motivated by the periodically forced Beverton-Holt equation (2) we
consider a general class of periodically forced equations of the form

Xy

Xl Zf(m

)x:, ae0,1) @)
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where the function

h(x) = f{x)x

satisfies the conditions

Al: heC*(RT, RN CHRE,RY)
H(x)>0, B'(x)<0 forall xeR]
A(0) = 0, h{oo) < oo

Here R™ =10, 00), Rf = (0, 0c) and A(co) = lim,_,,.(x). Define

r 2 H{04).

By Al, this right hand limit exists in the extended sense, ie.,
0<r<oo.

Consider Eq. (3) when a=0, i.e., consider the unforced, autono-
mous equation

Xpp1 = A{xy). : (4)

If r<1 assumption Al implies A(x)<x for x>0. In this case,
solutions converge to the equilibrium O for all positive initial
conditions x> 0. In this case, we say 0 is globally attracting for
xo > 0. On the other hand, if r > 1 then there exists a unique positive
root x, > 0 of the equation x = A(x). In this case, solutions converge to
the equilibrium x, for all positive initial conditions x, > 0, and we say
x, is globally attracting for x> 0.

Levma 1 Assume AL If v < 1, then the equilibrium Q of (4) is globally
attracting for xo> 0. If r > 1 {including r = o) Eg. (4) has a globally
attracting positive equilibrium x,.

By a fwo-cycle we mean a solution x, of (3) whose even and odd
iterates are both constani, fe., Xopr=c¢y and xpi1=¢; for all
t=0,1,2,.... We will denote a two-cycle by the ordered pair {cg, c1).
If both ¢y >0 and ¢; > 0 then we say the two-cycle is positive. The
solution of (3) converges to a two-cycle (g, ¢1) if

,}j?(}c(xzk, Xak41) = (o, €1). (5)
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A two-cycle (cy, ¢1) is globally atiracting for x> (O if solutions of (3)
converge to (g, ¢q) for all initial conditions x> 0.

In Section 2 we consider the asymptotic dynamics of the periodi-
cally forced equation (3). Theorem 2 establishes, when r> 1, the
existence of a (unique) positive two-cycle that is globally attracting for
xo > 0. Our main result appears in Section 3. Theorem 3 shows, under
certain concavity conditions, that the globally attracting two-cycle
{(co, ¢} when r> 1 i3 attenuant, ie., it has a suppressed average in the
sense that

1
E(CG +¢1) < Xe.

This means the presence of periodic forcing in Eq. (3}, ie, a>0,
results in a global attractor with decreased average.
We will have need of the following two assumptions.

A2: FeCRY, RN NCHRE,RY)
Fl(xy<0 forall xeR{

A3: feC'(RT,R)NCHRERT)
f(x)>0 forall xeR}

Note Al and A3 together imply A2,

2. TWO-CYCLE SOLUTIONS

Al implies the solution of the periodically forced equation (3)
with x5 >0 is positive, ie., x>0 for all 1=0,1,2,.... Our goal
in this section is to determine when it is true that for all x>0
the solution tends to a unigque positive two-cycle solution. The

components of a two-cycle (cy,c;} necessarily satisfy the pair of
“two-cycle” equations

c (6)
<o mf(l C_la)cl.



864 J. M. CUSHING AND 5. M. HENSON
Conversely, positive solutions ¢ >0, ¢; >0 of these simultaneous
equations define a positive two-cycle (¢, ¢1).

TuroreM 2 Assume Al and consider the periodically forced equation
(3) for o> 0. If r <1 then the equilibrium 0 is globally aittracting for
xg> 0. If r > 1 (including r = 00) then there exists a positive two-cycle
(¢o, c1) that is globally attracting for xo > 0. If f(x) Is increasing (e.g.,
if A2 holds), then this two-cycle is strict, that is to say ¢ # c1.

Proof Assume xy > 0. From the first composite of Eq. (3) we see that
the even and odd iterates, x,; and xa .1, of the solution x, with initial
condition x, > 0 satisfy the equations

exe1 = Eleg), e =x0>0

(7)

O] = O(Ok), g1 =x; >0

respectively, where

o 1 X X
E(x) :f(l - af(l + a)x>f(1 + a)x
) 1 X X
0(x) mf(i -i»af(l - a)x)f(i wa)x'
Here ej =xq, and o =es g for k=0,1,2,.... Alternatively we can
write
14+ o X

O(x) = (1~i~a)h(—i~_;——g«h(l fa))

Assumption Al implies F(x) and O(x) also satisfy Al. A calculation
shows

E(0+) = 0/ (0+) = 1.

From Lemma 1 applied to both equations in (7) we conclude that both
sequences, and hence x,, converge to 0 if r < 1.

If, on the other hand, r >> 1 then each equation in (7) has a globally
attracting, positive equilibriuma. Thus, the even iterates ep= X
converge to the unigue positive oot ¢o > 0 of x= E(x) and the odd
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iterates op =ey 4 converge to the unique positive root ¢; >0 of
x=0(x). If we let =2k in Eq. (3} and let & — oc, then we find by
continuity that ¢y and ¢y satisfy the first of the two-cycle equations (6).
Similarly, letting ¢ =2k 1 and passing k— oo in (3) we find that ¢
and ¢; also satisfy the second equation in (6). Thus, the two constants
¢ and ¢, define a positive two-cycle (¢, ¢1) to which x, converges.

If ¢y == ¢y = ¢ then from the two-cycle equations (6) it follows that

f(lia) ‘"‘""f(zja)'

If fis increasing, we arrive at a contradiction. Thus, in this case, ¢o 5 ¢;
and the two-cycle is strict. [

3. ATTENUANT TWO-CYCLES

For r > 1 {including r = co) the autonomous equation (4) has a unique
positive equilibrium x, > 0. Changing variables from x to x/x, in Eq.
(4), we can assume without loss in generality that the unique positive
equilibrium is 1. Under this assumption A(x) satisties the added
restriction

Ad: A1) =1

(and hence (1) =1). Note that Al and A4 together traply r > 1. Thus,
under these two assumptions Theorem 2 imnplies the existence of a
positive two-cycle (g, ¢;) that is globally attracting for xo > 0. This
two-cycle is attenuant if and only if

%(c{)+cl)<1. (8)

THEOREM 3 Assume A1, A3 and A4. For each o€ (0,1} the positive,
globally attracting (for x> 0), strict two-cycle of the periodically
Jorced equation (3) is attenuant.

Before proving this theorem we establish some lemmas.

Lemma 4 Assume Al and A2. For r > 1 let (¢, ¢)) be the positive two-
cycle guaranteed by Theorem 2. Then 0 < ¢y < ¢ for each o€ (0, 1).
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Proof For purposes of contradiction assume ¢ < ¢y From A2 and
the second of the two-cycle equations (6) we have

e =f(lc_—‘a)cl <f(1 j_*a)f:g = (1 +a)k(1—j{—5),

By Al and the first of the two-cycle equations (6) we have

4] Co
( M)h(m) <@ +a)h(1 M)
Ef(l _c:a>co = ¢y,

which gives the contradiction ¢ < ¢1. |

LeMMa 5 Assuime A1 and A4. Then

osan) va-(rlg)

for all (0, 1).

Proof For ael(,1) define the function

w2 3laron(p) + - an(i2) |

Since w(0) =1, it suffices to show 1{«) is a decreasing function of «.
For a€ (0, 1) a calculation shows

Wlo) =¢(l +a) - ¢(l ~ )

0+ 1))

By the Mean Value Theorem, ¥'(a)=2a¢'(c) for some ce(l—a,
I+ ). However, by Al

1 1
= (1) <o

and hence 1/(a) < 0. o

where
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LemMMma 6 Assume A4l, A3 and 44. Then K{l/(1+a)y< 1 for ail
aei0, .

Proof Since K'(x) <0 for all x>0, it suffices to show A(1/2) < 1.
By the Mean Value Theorem, I—7(1/2)=f(1)—f(1/2)={1/2) (¢)
for some ce(1/2,1). However, A3 implies /" (c) > (1/2), and thus
1> (127 2 +f(1/2)=H(1/2). |

Proof of Theorem 3 1f ¢; < 1, the two-cycle is attenuant by Lemma 4.
Therefore we assume ¢ > 1. We can rewrite the two-cycle equations

(6) as
o ={1+a)h(1i0a)

c0=(1-a)h(ic_1a).

Consider the second order Taylor expansions at ¢=1

( ia)h(ﬁa) — :a:a)h(rjg-d

+h’(1ia)(“” 1) +Hes (c,0)

where

Halo 2 3 (pg Hese 17

and £ 5 is a nonzero number between { and ¢. By Al, Hi{c,a) < 0.
The two-cycle equations become

1

@) a=0 m)h(ﬁm&) +h’(1—)(q} — 1) + Hy (o, )

() o= (1 a)k(—l——_%—a) -i-h’(l—:——>(cl S+ H_ (e, 0).

-t
2

()

2

Note

h’(i—é—&)(c; - 1)<h’(1 ia)(cl ~1)
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since A"(x) < 6 for x > 0. Thus, from (9b) we have

o< (1 —a)h( ! )+h’(1j_a>(c1 1)

1f we add (9a) to both sides of this inequality, we obtain

%(6’0 +e) < % [(1 +Q)h(l—~lw1~—d) (- a)h<r}a)}

, 1 1
+ h (H_a) ('2-((3(} + Cl) - 1)
Lemma 5 implies

1 s 1
§(C§+C§)< 1 +h (m) ('é‘((}{)“i'ci)“ 1)

(%(c0+cl) - 1) (1 mh’(nim_%m&)) <0.

By Lemma 6 the second factor is positive and therefore the first
factor is negative, ]

and hence

By inequality (8), it is certainly true that a two-cycle (cg,cy) is
attenuant if max{cy, ¢y} <1 In this case, we call the two-cycle strongly
attenuant. If, on the other hand, an attenuant two-cycle satisfies
max{cp, ¢1} > 1 we call the two-cycle weakly attenuant.

TrEOREM 7 Assume A1, A3 and A4. For o €(0, 1) sufficiently close to 0
the positive, globally attracting (for xq > 0), strict two-cycle (co, 1) of
the periodically forced equation (3) is weakly attenuant. For e (0,1)
sufficiently close to | the two-cycle is strongly attenuant.

Proof From the two-cycle equations (6) we have the equation

S A
Sl m) v

and hence
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for ¢; > 0. By Al and A2, the right hand side, which is identical to

(a2 (i%)

is a decreasing function of ¢; > 0. Therefore, any positive root of (11)
is unique. In particular the root ¢; = 1 when o = 0 unique. The implicit
function theorem implies there exists a (locally unique), continuously
differentiable root ¢; = ¢;(a) for a near 0 satisfying ¢, (@)= 1.

Differentiating both sides of Eg. (11) with respect to o and
evaluating the result at =10 we obtain

_

From f'(1) <0 and 0 < #{1) = 1+ (1} it follows that ¢{(0) > 0. Thus,
ci{e) > 1 for o> 0 sufficiently small and the two-cycle is weakly
attenuant.

From Eq. (10) we derive the ineqgualities

e l—a.f o a \1-a f o -
0 <er=(1 *“")f(1+a,f(1_a,>l_a)1+af(1—a>l—a

:(1+oc)h(%“}gh(1fa))

<( +a}h(§%§k(m))

valid for all a€{0, 1). This implies

I ¢i{e) =0

Ot o
which implies ¢; <1 for o near 1. By Lemma 4 max{eg, ¢1} <1 and
the two-cycle is strongly attenuant for « near 1. |

4, EXAMPLES

Consider the periodically forced Beverton-Holt equation (2). For this
equation

! h(x)mr-r--i_--x r>1.

f)=ry Fr=Dx

+(r—=1)x’
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All assumptions Al, A3 and A4 (and hence A2) are satisfied.
Therefore, for each a&(0,1) the Eq. (2) has an attenuant, positive,
strict two-cycle (cg, ¢y} that is globally attracting for x5 > 0. In fact, in
this example the two-cycle is {cg, ¢;) where

_(r+ 11 —o?) _ {r+1)(1 - o)
cﬂmlma+r(1+a)’ Clm1+a+r(1m~a)
and
1 1+2r 4+ 42
slatal=y FAA+ /(i —a)r+r ~ b

The cycle is weakly attenuant (¢; > 1) for 0 <o < (r—D/(r+1) and
strongly attenuant for (r—Dfr+1)<a< 1. See Figure 1 for an
example.

Other examples to which Theorems 2, 3 and 7 apply are

1 .
f(x)mrm forO<p<l, r>1

and

f(x)=x"1 for0<p<l

1.2} Sy
1.0
Lot e

08

06 L=

04

02

0_0 L A 1 ). 1

2.0 0.2 ¢4 [H1:) [1X:] EX
o

FIGURE 1 The two-cycles of the periodically forced Beverton-Holt equation (2} and
their averages are plotied as functions of the rejative amplitude o when r=5> 1.
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FIGURE 2 The two-cycles of the periodicaily forced equation (3), with f(x) =x~ 7,
and their averages are plotted as functions of the relative ampiitude «. In this case r = oo.

The latter example is a case when r=oco. Figure 2 illustrates this
example when p=1/2.
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